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The major objective of this study was one of inyeétigatiné fhe data

\ e , 9
generalizability of a new'blind transformation procedure, the¢ orthotran solu-
tion (Hofmann, 1975). The orthotran solution is intended .to be a "workhorse"

o

transformation solution. In arder to function in th}s capacity the orthotran
. ' mdst be operétional and available for immediate use, with satfsfactory results,
‘ without the bothersome prior considération of the geqera1 nature of the factor
-‘matrix,to be transformed. R
The actual procedures‘for realizing this oﬁjective are much like éhose
ffbr'validating a test, at’ least conceptually. One validity question is that
of determining Hg@ well an orthotran so]utioﬁ will approximate a subjective
so]ut%on. A second validity question is that of determining whefﬁer the
quality of an orthotran solution is situation specific.” A third validity
question is one o# determining whether the orthotran is really "better". than
existing teadnsformation procedures in terms of approximating subjective solutions.
Clearly the host important consideféfion is(tﬁét of data criteria. Eighteen
’ differént factor matrices are used in fhis étudy: For each factor matrix an
ideal'subj;ctive‘so]ution has been determined either by the author reporting
7 the factqr matrix or by a pe}§on ;ecognized by the data author as being an
excellent "rotatjx." Solutions weré determined by Swineford, Lawley, Thurstone,

.
]

Holzinger and Horn as well as by others.

3

- Including the orthotran, 12 blind analytic transformation prgcedures are
applied to each of 18 data sets. The transformation solutions are summarily

described by four indicds. One of the indices is new and is developed in-
, , L ) ‘ '
this paper in order to provide a relative index of the adequacy with which a

Y

blind solution approximates a subjective solution.

13




. The first part of this paper pro;ideg brief descriptions of ‘the 12
blind transformation procedures. The second .section describes the four .
descriptive indices. In the third sécfion the 18 déta Eamp]es are génera]]y

described with regard to a conceptual universe of factor solutions. Also

included in this section is a brief description of each data sample. The

4

fourth section provides a discussion and summary of the analyses..’ J

g Blind Analytic Procedures *

The blind analytic protédures to be discusse& in this paper cén be
subdivided into four general catedories: A

(as the class of oblimin solution;

(b) the class bf orthomax solutions;

"() the Harris an&>Kaiseriso]utions;

(g) the ofthétran solution.
Whereas the oblimin and orthomax solutions are computed direé&]} as a Tdnglion
of either maximizing or minimizing some mathemética] criterion, the Harris
and‘Kaisei solytions, ga1n1ng in popu]ar1ty, are two emiprically based so]ut1ons,

o

while the onthotran solution is determ1ned pr1mar1]y through the ut111zat1on of

principles of artificial inte™igence.

The class of orthomax solutions are blind orthodbna[ solutions; the

class of oblimin solutions tend to be blind oblique sd1htiqns as do the ngri§
and Kaiser solutions. The orthotran tends to determine blind ablique solutions
but will, by necessity in certain'situations, determine solutions identical or

very similar to those defineq by the class of orthémax sp]utions. A1l solutions

“are determined as “"normalized" §o]utions, variable vectors assumed to'be_of
unit 1¢ngfh during the computation process, as opposed to "raw" solutions

inasmuch as raw solutions just do-not appear to detetmine as compelling simp[el

1

structure solutions as do the normalized solutions.

-
-
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Orthomax Solutions. The class of orthomax so]ut1ons all seek to -

determ1ne an orthogona] solution that w111 maximize some specific férm of the

gereral orthomax cr1ter1on (Mu]a1k, 1972) which is in a.very special sense

,

a we1ghted" form of the sum of the ¢ column variances of the squared factor

¥
coeff1c1ents . * d

" It is the weight value, w, se]ecteéithq} determines’ "the specific type
, of orthogonal so]ution.computed.' The quartimax criterion (Carroll, 1953) is
defi%ea by (w=0), the varimax criterion (Kaiser, 19!85 is defined by (w=1),
the equamax (Saunders, 1962) fs defined byv(w=r/2) and is identical to the
varimax for a two factor so]utienﬂ A]théugh W is specifically degined here
it can, techniéé}ﬂy, be set at any value. Th#sestudy investigated only the |
. Ya]ues of (0, 1, r/2) as they represent the prominent ehoices selected for use
in blind orthogonal solutions. - g ‘

N L,
Oblimin Solutions: The class of oblimin solutions dare subdivided into

two categor%eS‘ the direct oblimin and the indirect oblimin. The distinction

LIY

between the two be1ng that theunan1pu]ated matr1x,-the 1nterpretat1%e matrix )
‘, of interest in the direct ob]1m1n so]ut1on, (Jennr1ch and Sampson,‘]966)'1s the .’
primary pattern matrix, the set of regression coefficiqpts for estimating
‘variablé Scores from factor scores. The ‘manipulated matrix in the indirect
'oblimin solution (Carroll, 1957; Harman, 196fl is the reference structure matrix:
Once a reference structure matrix has been determined it is usually cgnrerted
to a primary pattern matrix for interpretation. ‘
Th; objective of ihe ob]imin-type solutions, is to minimize a criterion
which is in a very special sense a we1ghted form of the r{r- 1)/2’co]umn
covariances of the squared entries of the so]ut1on matrix, either a primary
pattern matrix in the case of a direct oblimin approach or a reference structure

matrix in the case of an indirect oblimin approach.

S




As with the orthomax cr1ter1on the cho1ce for W determ1nes the qup1f1c :

solut1on computed F0r ‘the 1nd1rect so]utron Gw 0) defanes the” quartimin .

criterion; (w—.5) def1nes the b1quart1m1n cr1ter1on; (w=1) the covar1m1n
- - e ' . * e
criterion (Harman, 1967). “For the direct ob11m1n, the cho1ce of we1ghts

seems to be in need of clar1f1cat1on, but the most prominent we1ghts (Harman,
v ‘ 1967) would seem to- be (0, -.OS, -1.0) w1th the zero weight be1ng associated ’
( with the direct quantimin*(Jennrich & Sampson, 1966). As noted by Harman (1967)
there seems to be Tittle relationship between the weights of the‘dire:t and'in:
d}rett oblimin with regard to the "quality"vof the sdlut%on computed. , ,
A]though the range'oflw is somewhat more restnicted (Mulaik, T;;Z) when
used with the class of ob}imin solution, than with the class of orthomax
sd]utions there is still a considerab]e range of choices. The two sets of ,
weight ‘previously nbted,‘(e? -.5, =13 O,o.é, 1), were selected for use in
defining the two'types of oblimin sd]utions- Harman (1967) specifies the
conseqences, somet1mes qu1te grave of selecting va]ues outside of the range
of those used in this study }
Harris and Kaiser So]utibns The Harr1s and Kaiser -(1964) solutions

.

are tWO sets of .empirically based equat1ons, der1ved from the general Harris

and Ka1ser (1964) orthob11que equat1ons, for the qu1ck and sometimes highly .
.efficient computation of oblique factor so]ut1ons
The two so]ut1ons are specified as the independent c]uster solution-and
the "A'A proport1bna1 to L" soldtion, henceforth (A'A) solut1on The correlatigns
are reproduged from the initial factor matrix and then resolved into r unit
. length ei?enyectors andAaésociated ' eigenvaluef. The independent cluster

solution, primary pattern matrix, -is a column rescaling of a raw quartimax ’

\

. N ' ’ "
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rotation applied to the eigenvectors. The A'A primary pattern solution is )

defined by (a) rescaling the columns of the eigenvectors by the fourth root

4

of the eigenvalues, (b) applying a raw quartimax rotatign to the rescaled

4
1]

- eigenvectors, (c) rescaling the columns of the rotated matrix {Harris and

“ y ~

Kaiser, 1964). . L.

Orthotran So]ut1on The orthotran solution {Hofmann, 1975) is a type .
of ad hoc solution based upon the general orthob11que equations of Harris and
N Kaiser (1964). Utilizing principles of artificﬁa] intelligence, specifically

heuristic search procngres, the orthotran approach determinegﬁa'so1utfon,

* g

' primary pattern, from an infinite solution space.

Generally, the orthotran solution functions in conjunction with some
orthogonal transformation solution. For the purposes of this study it was
used in*conjunction with a normal varimax solution.as this is the orthogonal

solution suggested for use as a blind procedure by Hofmann (1975).

>

, The ortnotran has been programmed and is presently being considered for
inclugion in all of the maJoerb]1shed computer packages Earlier versions

of the orthotran, the ob11qu1max transformation 1n particular (Hofmann, 1970),

—

have been used since 1970 with empirical’ app]1cat1ons,a1ready 1n-the published

N
~cF

literature.

¢

- . Descriptive Indices . .- AN

v Four descriptive indicés are utilized in, this study. Twq of the indices?

\ .
. are not really new, a third index has Just recently been pyblished while the

> . . &

e - Jourth index is being described for the first time in this paper.. The hew °°
\ \

index is descr1pt1ve of the degree of congruence one solution has with another

The other three indices represent various ways of summar11y descr1b1ng a factor

r , . . . @
transformation solution.\ ' C s Lof
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Hyperplane Count: ‘The hyperplane  c¢ount is an attempt to quantify a .

factor solution by describing it in terms of the number of,zero coefficie®¥ in
the sofbtiqn matrix. It is just the number of coefficients less that .11 in

magnitude for any given factor solution. It is based-~upon Cattell's (1966)
- i ’ .
notion that for any given sample of variables, "we should expect any true '

& 7 natural influence to affect only a few of them." Cattell states that there
N sh?u]d be a:transformation position for each factor such that a majority of

, - 7, the variables have. zero loadings. : . : . -
VAR \ )

Unlike the other three indices used in this study the'magnitude of the

. - L
hyperplane count is a function“of both the number of varjabJes and number of

s

factors. It may be used for comﬁérisons of different solutions to the same

factor matrix. -

Average Absolute ?actor Infercorre]ation. \This index unlike the other

4 '

indices included in this study is defined as a function of the primary factor

- \‘intercor%e]ation métrii, as opposed to the primary patfern matrix. It serves-

b ’ as an index of the average obliquity of a factor solution.

~ . :
To compute this index the absolute value of each non-diaganal correlation

in the primary intercorrelation matri® is converted to a Fisher z. These values ~
e . - . N . N -

'are then averaged. The average Fisher z is then cpnverted back to a correlation,

henceforth average factor intercorrelation. V . -
- This Q;jfx is a stable index, being independent of the number of variabies
. . v .

v

and the numbér of factors, and provides a descriptive index for use in comparing

certain aspects of primary factor solutions within and across different data sets.

'Averaée Variable Complexity. This index is defiped as a fynction of the

» ’

rows of the primary pattern matrix. In"the linear description of a given variable |

" any number, r, of common factors may be involved as long-as (rv<°n). This ’////
3 Y ’
[




number is referred to as the comp]éxi;y of the variable. Specifically, Yariable
complexity refers to the number of. factors involved in the "rdw-wisg"'descriptioh

~ of a variable in a factor matr'ix (Hofmann, 1976).

L}

When there is one suBstantja] entry in a row of a factor matg¥x, all
- .

- other row entries being zero, the complexity of the variable associated witﬁ the
row is 1. The average variable comp]ekity for a factor_so]ut$%n is just the

average number of common factors needed to describe'the n variables.

>

This index is a stable index, being independent of the,ngmber of variables

and relatively independent of the number of factors, usually the average variable

= |

- complexity will range from an absolute low 03.1, a true independent cluster
so]ytion, to a high of 2.5 to 3.0. Thus, this index is a de§cribtor appropri-

‘ate for use in comparing factor solutjons both within and between different .

« t -

data sets. c ) \

b

. -~ . Index gf_Cohgruence. Thi$ index is intended to be used as a quaptitative

'

summary of the pattern similarities of’ the coefficients of two (nxr) solution

’

matrices. It is basedcypon Burt's coefficient of congruence (Cattell, 1966), -

The formila for determining the coefficient of congruehce between a factor in

! onhe matrix and a factor in a second matrﬁx is repo}ted;by Cattell (1966, p. 196).

Thg\coefficient of congruence serves as an index of the degree of pattern

~

similarity-of two factors, having a maximum upper limit of 1.00 and lower limit

of -1.00. ~

The index of congruence is a single number with a maximum upper limit of

1.00 and a lowér limit.of 0. It is an index of the degree of pattern similarity
. one matrix has with another. .In this study it is an index of the adequacy
with which a blind solution approximates a subjective solution. It i§.computed

4

according 4o the following steps:

. . »




are utilized the latter problem is reduced.,x .

blind approximation to the subjective solution of that data set.

8

" (a) comdute all posJiBTe congruence coefficients of the subjective sol-

ut1on w1tQ\1tse1f (Factor 1 with ifself, with factor 2 and so on);

(B) obtain the sum of the absolute values of these congruence coefficients
4

(they will represent the abso]J!E sum of the congruence coefficients
. . ~ '\

<

" of the ideal blind solutiop with the subjective solution);

(c) compute all possible congruence coefficients bf a, blind solution with

the subjective so]utjon; .

4

‘(d) ‘obtain the 'sum of the absolute values of these congruence coefficients;

r

(e) determine the absolute_difference between the the sum obtained in

step (b) and'step (d) and call this "error of fit;" - -

" (f) express this absolute difference as a ratio to the total of step (b)
: 10 10

and call it relative error; . |

(g) subtract the value determined in step (f) from unity to determine the

3

re]ative accuracy and call the resulting number the index of congruence.

This index will be un1ty when a blind so]ut1on is identical to the subjec-

tive solution. Unfortunate]y, this 1ndex is subject to the samé limitation of
the coéfficient of congruehce.‘ It can give a value of unity for patterns of
identical shape even théugh the coefficients may have differeﬁf levels of
magnitude. Alsd the ideal sum may be obféjned by more Fpan the one ideal set

of congruence coefficients. However, to the extent that more than two factors

|
-

This index is a stable index and may be used for comparisons_of different

solutions to the same factor matrix. That blind solytion having the highest

index of congruence for a particular data set will be assumed to be the best

.

- Data.Se]ection/

’

For illustrative purposes 18 data sets are utilized in this étudy. Of

e 10
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particular concern is the representative nature of these data sets. Although

only intuitive it is felt that théigglztfiff sets may be fair]y representativé
of the universe of.possib1e factgr matrices with regqng to variiple cqmp]exity'
_and average intercorrelations. A variety of characteristics are manifested by
these daga: number of f@ctors, variable complexities, hyperplane counts,)average
factor in%ercorre]ations, héteroéeneity of commﬁnal{ties, error factors, bi-
polarity of factors and perhaps still other important yet'unrecognized character-
istics. A1l data sets selected have‘as;ociated with them so]utiogs that were
.determined subjectively. Theée subjective'so]utions may be thought of'as being
ideal or criterion solutions. " . N
With two’exceptions the data are grouped into two general types: plasmodal
and real. P[asméqal data (CatteT{, 1966) are generated by physical models
having known and easily identifjed formal properities similar to those of
matpematida] models, but they are gubject to measurement error and have other }
physical realities not present in abstract mathematically determined data sets.
The nature of such datg‘is both well understood and well behaved. A
‘ The real data are bésed upon observatjons on real peop]é’qgth less than
perfect measuremedt instruments and as such they are prone to n@imerous predictdble
and unprédictab]e problems. It is of the utmost importance to include such dafa
in aﬁ} generalizability study as,if is the satisfactory "handling" of a variety .
of real data that suggests the%genera1jzabiiity of a ‘transformation procedure.
When a procegurq performs poorﬁy with plasmodal data oﬁe caq usually identjfy
‘the cause of such poor pgrformancé through én intimate knowledge of the nature

. 7
of the data. Unfortunately,poor(performance with real data is not so easy to

~

explain. . For this reason satisfactory performance of a blind transformation
procedure with a variefy of. real data is beﬁhaps more laudable than.satisfactory

performance,with pTasmodal or true artificial déta.- . )
L3 k , - . . % ‘\ .
; . .

- | 1




Table 1

'

) Identification, Descriptions and Source of Illustrative Data Sets

v 4

|

Data Identification Data . Number ‘
. ‘ i .
Type Variables  Factors Sample’ " Source

<+ e © [N
- Zan

(1) Thurstone's Cylinders Plasmode T N 27 Thurstone, 194
. c 1 p: 119 '

(2) 8 Physical Variables  Real - _ . ' Holzinger and
" Harman,1941,p. 2

(3) Swineford .. Real . : . Swineford, 1948
. ' p. 17-18 ‘

(4) Lawley Real ‘ _ Lawley and
. Maxwell, 1971,

(5) 13 Psycho]ogica]' Real \ ’ . ' Holzinger and
. C . . Harman,1941,p.

. ' : /
(6) Cups of Coffee A . Plasmode ' Cattell and Sul
‘ N . . van,1962,p.191

(7)‘Cﬁps of Coffee B Piasmode 5 - . . Cagte]ll and S
. » ’ . .ot van,1962,p.191

(8) Thurstone's Trapezoids Plasgode | S Thurstone,1947,
Cp.432

(9) Box Problem Plasmode ‘ Thurstone, 1947,
. . 6 ' p.136

(10) Horn * Real Horn,1963,p.127
(11) Coan's Eggs Plasmode Coan,1959,p.158

(12) 24 Psychological . Real { v Holzinger and
) . : Harman,1941,p.2

(13) Thurstone's orthogonal Artificial - . Thurstone, 1947,
. p. 254

) . ‘ ' 3
(14) Pemberton . Real . , Pemberton,1952,
.. : ' . . p. 276 :
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Data Identification _Data _ Number )
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2 (15) Ball Problem - - Plasmode - 32 4 - 80 Cattell and
. L ’ . . Dickman,1962,p.
_ (16) Degan Data | éReal 32 .y "* 367 Degan, 1952,p.3
(17) Kelley's Data - .Real . 4 - M 442 Kelley,1964,p.3
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Two of the'data sets are artificial, from the point of view that the

" factor "solutions were’hathematica]]y determined. Both artificial data sets

' . . . .
were generated in order to define extreme average factor intercorrelations.

One data set was generated specifically for thisxstudy in order to define an

2

- average factor 1ntercorre]at1on of .99.(It can be obtained by request from the
author). The second data set was generated by Thurstone' (1947) to def1ne an
average factor intercorrelation of zero.

/ . .' ;Tﬁe data are 1dent1f1ed and part1a]]y summar1zed 1n Table,1. Their sub-- X

P jective solutions are summarily described with the descriptive 1ndi£es in Table

2. AN descriptions for the subjective solutions are based upon primary pattern

matrices. ~ N “
, ' -

Conceptual Universe of Factor-Solutions. As previously noted two of*the

descr1pt1ve indices used in this study may be used for 1nterso]ut1on~compar1son

average variable comp]ex1ty and average factor 1ntercorre]at1on In Figure 1

N the 18 subJect1ve solutions have been p]otted as points 1n a two-space with

‘averaye var1ab]e comp]exqty and average ‘factor 1ntercorre1at1on serving-as

coord1nates. The abcissa is defined accord1ng to average var1ab]e comp]ex1ty
and ranges from ] .to 2.7. The ordinate 1s_def1ned according te average, factor

intercorrelation and ranges from O to 1.0. . These two'indices are reported in
) / ) '
Note that in Figure 1 the solution points tend to be bounded by a hyperbola

‘Table 2 for the subjective solutions.

_that becomes aé%mptotic to the two axes. The imp]icatidn of this bound seems
)
«. clear. Generally speak1ng the greater the obliquity of the so]ut1on the Tower

~Jﬂf

1slthe var1ab]e complexity, a]ternat1ve1y, the more complex solutions tend

- v

to be assog:ated ‘with relatively uncorrelated factors. A magor1ty of the soi-
utions tend to have an average correfation less than .50, this observation is

Y : ' '

v >

r

-

- ’ ’ :\ﬁ{ “ 14 - -:
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- supported by Rummel (1970) and Cattell (1966). Also it may be noted that a

1
majority of the solutions have ‘an average wariable complexity less than 2.0.
. The hyperbola has been included in Figure 1 and that portion of‘fhe figure
between the axe§ and the hyperbola may be thought of as a coﬁceptua1 universe
of fagtor sotutions. Most properly determined factor, séﬁuﬁions would fall

within that bounded rébion.

Discussion and Summary gf_Ana]ySegé‘
In conducting the analyses of this study fhe fp]]owipggseguence of steps-
was adhered to for each data sou;ce: k i
(a) an orthogonal factor matrix was obtained from the 1i¢prétu}e source,
usually a centroid solution, with the exception=of data set 18

CEERN

which was defined mathematically in a principal axis form determined
from an artifiﬁia] factor solution matrix; |

(bf the'orthoggnal mat?i* was subjected systematically to‘all 12 blind
transformation procedures; S . \

(c) ‘the subjsctively determined solution wdé obtained from the literature
soyrce and \jf it was .an oblique so]g;iQn”reported as a reference
structure solytion it'Qas rescaled toAa primar} patfern solution
following Thurktone (1947);

(d) for each solution’the average primary intercorrelation, the hyperplane
count, and_the average vaniabfé complexity was determined (seeaTab1e 2);

(e) each b]iﬁg‘tfansformation solution wa% compared to the subjective solu-
tion to dgte;mine the index of congruence. (Final cbjumn of Tabie 2).

In ;ummarizing the resultsfor discussion purposes the single most imﬁor%gnt

consideration was fe]é to be one of‘addressing the adequacy with which the blind

solutions apbroximated°the subjective solutions. To this end for each data

set ‘the %igheét indexﬁbf congruence, the smallest overall percentage of relative

16
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‘ ' Table 2. Summary
- * ‘Hyper- Average Index
° ' Average plang Variable of
Data Transformat}on Factor r Count . Com]exitL Congruence
1 Direct w=0 30 ] 1.23 .85 ~
" Oblimin  w=-.5" 724 1 1.23 .82
S Twe1 20 - 3 " 1.23 . -80
Indirect w=0, ‘48 0 1.22 79w
Oblimin  w=.5 27 0 1.24 .88
w=1 00 3. 1.32 .99
" - Quartimax 00 0 1.24 .87
© . Varimax 00 3 1.32 .99
A'A 23 3 1.49 .96
. Indep. Cluster 43 0 1.2} .79
Orthotran 05 3 1.31 .99
Subjective .00 14 ©1.30 -
2 Direct  w=0 47 8 1.01 1.00 J
Oblimin  w=-. 37 7 1.02 .94
\ %, w=-1 - 34, 6 1.02 .92
: Indirect w=0 01 0 1.62 .58 ,
Oblimin  w=.5 27 4 1.04 .89
w=1 00 0 1.14 .78
Quartimax " 00 0 1.14 .78
, Varimax . 00 0 £.1.14 .78
A'A . 25 0 1.78 - .60
Indep. Cluster 48 8 1.01 - 1.00
Orthotran 46 8 1.01 1.00
Subjestive 48 8 1.0 -
3 Direct  w=0 30 14 1.16 .96
Oblimin  w=-.5 22 14 .1.16 .98 ;
=-1 18 C 13 1.6 1.00/
Indirect w0 42, 13 115 .03, ;
©© Oblimin  w=-.5 19' 14 1.17 1.00"
S wel 10 # 5 1.17 YN 1
|
4y 17 -
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Table 2 Summary (continqed)

-

, %
7

1

%” " Hyper- _Average Index
- R . Average ‘plane Variqble of
Data ' Transformation Factor r Count Compléexity, Congruence.
Quartimax 0 . 12 1.19 .94
Varimax 00 - 12 . 1.34 .80
Equamax 4 00 o~ 7 1.41 .91
A'A 20 5 1.54 71
. Indep. Cluster 38 13 1.16 - .95
" Orthotran 37 13~ 1.16 .98
}Ot(]{ctive 74 15 1.10 -
Direct w=0 31 12 . 1.17 99
. Oblimin we-.5 26 m 1.19 .96
= weel 24 n 1.19 .94
d Indirect w=0 45 1 1.17 .99
Oblimin . wt.5 © 20 9 1.21 :91
, wel 09 2 1.44 70
Quartimax 00 3. 1.34 167
Varimax 00 3 1.34 st 1,176
H%q@% . w@%woo 2 1.34 e
e w500 ] 2.34 .54
~:*  Indep. Cluster 40 - 13 1.16 .94
Orthotran 39 1 1.16 9
Subjective 32 11 1.18 - -
Direct w=0 48 , 23 1.20 81
Oblimin w===5 49 19 .28 .79
w=-1 45 - 1,30 .76
Indirect w=0. 21 17 1.14 ..88
Oblimin. w=.5 6 18 117 .91
S Factor Collapse
Quartimax 00 16 1.25 .82
Varimax .00 15 1.28 . .82
Equamax 00 . . 7 1.88 .62
18 —
* o
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' Table 2. Summary (Cantinued) ‘
Hyper- Average Index
. Average plane Variable’ . of
Data* Transformation Factor r Count _ Complexity- Congruence
5 A'A 25 12 1.69 .69
Indep. Cluster  + 74 5 1.8 . 290 -
orthotran 22 19 1.18 .93
Subjective 50 19 1.14 -
6 - Direct w=0 09 58 - 1.4) .89 -
’ Oblimin w=-.5 ' 10 - 54 1.47 .96
| =1 09 . 55 T, 1447 ' .96
Indirect w=0 49 24 . 2.3 . ~98
Oblimin w=.5 07 55 ©1.39 .99 .
RV Factor Collapse . -
4 Quartimax 00 53 . 1.40 © .99
. Varimax 00 52 1.41. .97
Equamax 00 .50 1.44 .98
A'A - 07 22 2.28 .73
> Indep. Cluster 14 51 1.41 .87
- Orthotran 12 .. 54 1.36 .94
. ‘Subjective 10 52 v 1.38 . -
Rt p ,
2 Direct™ W=0 12 5 . . 1.32 .93
R Oblimin w=-.5 u 57 1.34 .98
W=-1 10 . 58 1.35 1.00
Indirect w=0 Fadtor Collapse
_ Oblimin_ w=.5 factor Collapse _
w=1 + factor Collapse s .
Quartimax "0 48 1.38 .96 '
Varimax /00 49 1.38 .90
Equamax /oo 48 1 I
A'A , / 08~ 29 2.43 .68
Indep. Cluster * [ 20 ' 49 |\ 1.39 .83
‘Orthotran / 10 57 1.34 1.00 |
Y % Subjective 13 50 1 S |

.39 _ -

ERIC ., - 19 :




S _ Table 2. Summary (Continued)
R Hyper- Average Index
- : Average - plane < Variable of
Data Transformation Factor r Count Complexity Congruence
8 Direct  w=0 28 24 7.61 .96
Oblimin w=-.3 26 C25 1.65 .93
A w=-1 25 1.68 .91
' Indirect w=0 Factor Collapse
Oblimin w=.5 22 23 2.01 75"
. w=1 10 \ 1.59 * .95
Quartimax 00\ 15 2.0L 99
Varimax 00 16 +.53 .79
Equamax 00 13 ,1.84 .76
A'A 23 5 . 2.0 .85
Indep. Cluster 50 15 "11.65 .94
Orthotran 29 5 26 © .62 .94
Subjectiive ‘43 © 30 1.57° -
"9 Direct w=0 31 27.- 1.40 .92
Oblimin w=-.5 27 271 . 1.41 .94
w=-1 26 B '} '95
Indirect w=0 20 10 . 1.94 .99
Oblimip w=.5 23 27 1.41 .97
. .;" - w=l 10 6 1.61 .83
' Quartimax 00 17 1.51 .87
‘{ Varimax bg 15 1y52 .89
' Equamax - 0 15 1.52 .89
) AR 23 9 . 1.9, .92
Indep. Cluster 44 "6 1.42 .81
> Orthotran ~19 27 . 1.42 -1.00
Subjective 19 27 ) 1.43 -
f 4 ! .
10 Direct * + w=0 1 7| N .97
" oblimin w=-.5 1 44 .80 .90
w=-1 1 . . Mg 92
£
, \y'?
<0 R
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Table 2. Summary (Continued ,
Hyper-  ° Average ~’ Index
Average plane Variable of
Data fransfor@ation Factor r Count Comp}exdty Corigruence
10 fndirsﬁt =0 Factor Collapse o
Oblimin w=-£ 12 42 " 1.72 .81
' w=1 Factor Collapse” a o -
Quart imax, 00 a2 T LTS .84,
Varimax < 00 45 1.76° .9
Equamax 00 - 40, .87 .98
AA 08 33. 2.23, g7
Indep. Cluster 18 8. . & 1.93 ‘ga
Orthotran 16 . T A .83
Subjective 20 55. 4, 2.06 L.
/
11 T Direct w=0 27 72 - 1.47 e 95
Oblimin w=-.5 23 67 1.62° .99
=21 .23 65 1.67 ;99
Indirect w=0 3 41 ™ 1.89 .87
" Oblimin  w=.5 Factor Collapse
¢ w=1 Factor Collapse
Quartimax - 00 65 . 1.40 .98
Varimax 00 69 . 1.44 , .95
. Equamax 00 49 1.40 .82
A'A 18 32° 2.33 79,
. Indep. Cluster 35 66 1.42 .88
Orthotran n - 64 J.40 97
» Subjective 18 87 1.34 -
12 Direct w=0 38 44 .51 .83
_Oblimin  w=-.5 3 44 153 .78
b owE-1 3] 45 | 1.53 76 "
Indirect w=0 19 Y. 2.24 24 %
ObJimin; w=.5 32 46 1.53 g7 .
¥ Wl 14 6 2.18 .32
oo * Quartimax 00 3 .72 .58
: . "
- / . Mo
, . |

~
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N ! ‘ ; Table 2. Summary (Continued)
T Hyper- Average - Index
‘ S - Average s -plane Variable : of’
"Data -« Transformation Factor r - Couny’ Complexity - Congruence
12 «Léivarimax h 00 23 - 185 .43
N . Equamax 00 18 <oer . .43
A'A . ! 26 Tr—— 2.10 .34
S~ Indep. Cluster 56 39 . . .50 .94
‘ Orthotran 51 - - 40 149 .93
Subject " B4 a2 ’)y; S 1.49 T .. -
13 - Direct w=0 13 61/ 1.76 .83
o Oblimin  w=-.5 13° 63 . 116 . .84
s =1 /e, 63 > 1.76 N
Indirect ws0  « 28 ; N 2.8 o8
Oblimin  w=.5 12 60 . - 175 - B
w=1 1 53 7, 1937 .84
, Quartimax 00 66 177 .99 -
Var imax o0 67 . 1718 - .99
Equamax - 00. " 70 . 1.78 | ©.1.00
‘oA | 12 18 - . 2770, .00
Indep. Cluster 26 8 7 18 T 70
Orthotran 05" | 65 * T~ 1.77 .98
Subjective . 00 70 ™ 1.83 . -
. - . . : = Cs.
: ‘ . e 3 . 0, ’ i . . £
L Divect w=0 20 e - T 202, 0,9
Oblimin w=-.5 19 n2. . 2.04 .81
© w0l . 19 1Mo . 2:06 .85
Indirect w0 14 59 - 2.89 o,
Oblimin w=.5 Factor Callapse L ‘ ‘
RS w=1 Factor Collapse S : .
- Quartimax 00 S101 L 2.09 - . .88
. Varimax 00 . - 89 . 2.3 .63
: O - , . *’ ,
22 N i . o o
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Table g.’ Summary (Continued)

. Hyper- Average Tndex .
- Average -* plane .Variable | of
Data Transformation Factor r Count Complexity Congruence
14 Equamax 00 . 80 2.62 .46
A'A . _ 18. 63 3.93 .50 b,
Indep. Claster 42 108 1.93 .90
.- Orthotran 16 m- . 2.01 .87
. Subjective 25 131 L 1.97. . -
15 Direct w=0 19 “ 69 1.26 .93
Oblimin w=-.5 16 68 1.29 .94
. =-1 15 - 63 1.30 .92
Indirect w=0 . Factor Collapse '
Oblimin w=.5 09 64 - 1.39 .87
w=1 27 42 1.64 .73
- Quartimax 00 - 53 1.35 .75
Varimax 00 53 1.48 .8]
< Equamax - 00 54 .1.49 .80
A'A 137 * 23 1.72 55
{ndep._C]uste( 23 70 1.24 .97
Orthotran 26 " 68 1.24 1.00
Subjective 24 . 74 1.25° -
16 -- Direct w=0 14 148 2.07 92
Oblimin w=-.5 13 146 2.15 .96
. Wl 13, 146 2.20 .98
\\ “Indirect w=0 Factor Collapse
Oblimin w=.5 .09 © 157 " 1.95 .88
A w=1 Factor Collapse -
QuaFtimax . 00 131 2.24 .93
Varimax 00 18 2.26 " .99
Equamax 00 124 2.43 ~90
A'A gl S 110 3.50 .79
Indep. Cluster 26 - 149 2.14 .79
Orthotran 18 162 2.01 .85
Subjective 28 170 2

.05
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Table 2. Summary (Continued) \ ’
) Hyper- Average | Index
> Average plane Variable ‘of .
Data Transformation Factor r Count : Complexity Congruence
' 17 Direct w=0 - 15 . 298 2.38 93
Oblimin w=-.5 14 294 ' 2.3 - .93
" owe-l 14 . 289" . 2.48 - .96
) Indirect w=0 . . Factor Coilapse o 0
v Oblimin ‘w=.5 Factor Collapse ' — _ s ¢
) w=1 * Factor Collapse h
Quartimax - . 00 - 256 2.61 ' .81 g
Varimax 00 - 268 o252 . .96
- Equamax 00 - 248 2.75 71
" A'A | 13 186 - 4.78 78
[ . Indep. Cluster, 32 280 2.42 73
\\ . Orthotran ' 16 . 297 $2.32 .84
',/' © Subjective 13 289 2.60 -
. : -
18 - Direct w=0 04 8 108 .81 )
' ' Oblimin w=-.5 . 03 8 1.04 .81,
. _ w=-1 02 8 1.04 .81
Indirect w=0. - 20 8" 1.04 .80
Oblimin w=.5 . 20 8 1.04 .80 .
) W=, 00 0 - 1.98 .63
Quartimax 0o 8 1200 .81
| Varimax 00 0° 1.98 .63
A'A 19 0o’ 1.01 : .83 o
) Indep. Cluster ¢ 99 g - 1.01 .88
Orthotpan 99 ™ 3 1.50 . .95
Subjective 99 8 1.01 -
!

1
1
|
|
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error in‘approximatihg the subjective solition, was identified. It was decided

wn ¥ . . ! [

that within each data set all indices of qengruenhe within 5 percentage points -

-

of the highest index of congruence for that data set would be considered as

-

_béing amongst the best congruence values for the set of sé]utions determined
_for ;hat’given data set, 5 percénfage points being an arbitrary‘but nécessary
error‘band. In.Tabie 3 the 12 blind so1ution§ gre symmarfzed with‘regard to
their frequency of definind an adequate solution relative to the‘subjectivex

g -
criterion so]ut1ons; as indices of congruence .

Clearly ev1dent 1n Table 2 is the susceptab111ty G?rthe 1nd1rect ob11m1n
toward factor collapse, coefficiénts greater~than 1.75 in the pattern matr1xx
and factor intercorre]ation; of 1.00. Although. riot reported in Table 2 it was
found tﬁat direct oblimin weights that were positive and less than unity, |
e.g. .5,-will also result in frequent factor collapse. It would seem that
restricting at least the direct oblimin weights to zero ar some value less than
zero might serve as a guard against factor co11apse The use of ‘the orthotran
and Harris and Kaiser mode]S, both mode]s be1ng based upon the orthob11que
equations, will not by def1n1t1on evér result in factor collapse.

For all daFa sets there were‘1nd1ces of congruence greater than .90. This
would suggest that all subjective 'solutions were reasonable from'tHe perspective
that indeed they could be achiéved by a blind transformation solution. However for
some data sets, there '*we‘re blind solutions having a relatively low index of

congruence but having a hyperplane count considerably higher~than the other

blind sclutions. This would suggest that there may be more than one adequate.

solution foria given dgtq(set, at least in terms of hyperplane count (see the
orthotran solution of data set 16).
Harman (1967) has indicated that as the indirect oblimin weight varies from

~zero to unity the factors become less correlated. This study presents overwhelm-

»' 1
PO )
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ing evidence contradicting this generalizatioh When there are two factors:

it appears as though the indirect ob]lmin weight of unity will always define
an.orthogonal solution. _ However, in many of the instances\of singularity with
an indirect’oblimin weight of.unity the‘average factor intercorrelation (not
reported) was very high, above .90. This'contradictory evidence can also be
noted in the Tabie 2 values associated with data sets 2, % 12, and 15.

If one’were to plot the blind solutions in the two-space used for-the sub-

AY

jective solutions certa1n "so]ution regions" would appear These solution

. regions would represent the domains into which a subjective so]ution wou]d have

LS

to appear in order for the b]ind procedure defining the domain_to prov1de an

adequate solution. Theseqregions are bounded by very irregular lines and seem

only to exist for the poorer biind procedures This would, suggest that there

are additional dimenSions of description for factor solutions that appear to

have an inf]uence on certain blind procedures Although we note this interest-

ing observation it is not of great consequence because there are blind procedures

which functioned_ quite well with the data samples regard]ess of the data

properties. ) ' ‘
No ;ne ortho onal solution showed enough consistency in providing accurate

representation oj'the subjective solutions to really warrant further consider-

ation as.a'pragmatic bTind transformation procedure. Although it is frequently

argued that orthogonai so]utions provide an interpretative pictureg-of the under- ,

lying factor structure with a poor hyperplane count the/resuits of this study

do not support this particular argument. The index of congruence does not

rea]ly take into account the levels of the coefficients only their patterns

with regard to those of the subJective solution. Therefore if an orthogona]

solution, regard]ess of its hyperplane count, provides a‘regsonabiy good repre-

.
.
.
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~Table 3. Fréquency\ summa}‘yyof best blind solution relative
. to subjeckive solution.
glycmejdure Frequency }P{?rt‘gent
Direct w=0 8 44
© . Qblimin w=l, 9 50
‘we-1 8 44 g
" Indirect w=0 4 22
" Oblimin w=.5 3 17
wel 2 no]
Quarti;ma§ 6 33
Varimax LT 38
Equamax 4 - 22
AN .2 n
Ind"e\pend'ent'musteh 8 44
Orthotran . 15 &3 '
-
o \
[ S :~~ - ’
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sentation of the‘patterns of the coefficients in the subjective solution,

s -

then one would expect a h}gh index of coﬁgruence, but this occurred for less
than half of the data sets, mainly with those having an\average intercorre]atioﬁ
of approximately zero. . ‘

For 13 of the 18 data sets one or more of Fhe)direct oblimin solutions pro-— '
vided a high]y accurate solution. Unfortunatéﬁy we were unable to determine
either q priort or a posteriori which partiéu]ar direct oblimin weight would
define eithet the best solution or the poofest so]utioh. According to the
results presented in Table 3 if one were-to,seléct any particular weight to use ‘
consistently, they would obtain highly accurate solutions, based upon our data
samples, at bgst only 50\percent of the time and at worst bn]y 44 percent of
, the time. Altérnatively if they were to vary the weights from solution to
solution they might obtain an accurate soltuien only 17 perceht of the time.’

e The Harris and Kaiser (1964) A'A soltuion appeared to be particu]arly‘jnz
apprppriate for the data samples. For a number of data éets it defined extréme-
"1y complex so]uFions. Alternatively the independent c]ustér;moder which assumes

variables of unit complexity did comparativé]y well in defining adequate sol-

utions, whichk-is probably why it is so popuiar.

The orthotran solhtion un]ikg the rest 6f tﬁe\blind solutions had an over- -
whelming tendency, 83 percent of the time, to define a so]utioﬁ that was accur-
ate with regard to the subjective solution. 1 ) | ‘
| Conclusions
Severé] important°conc1usions seem warranted, however caution must be -
P

exercised with regard to the absolute generalizability of the findings of this

study. Although every attempt was made to*obtain data samples- from a'vhriety

. ~

b . . . R
of sources in order to obtain data representative of the universe of poss1er N }

factor solutibns, we have no guarantee that this was accomplished. A second

A
&

'
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major limitation of this study is that the index of congruence may be a very

rough measure of the fit of a transformed solution to a subjective solution

and the 5 percent range may be an underestimate of the error of this‘index.
&ertain]y it is in order to recormmend the tota?habandonment'of the indirect

’ oblimin so}utions. As a group they appear to be highly susceptible to factor

collapse. They also had the lowest frequency of\ defining adequafg solutions.
The Harris and Kaiser (i964)*A'A s6lution should also be abaqdoned.

Although it does not transform to singularity it does ténd to transform to

complexity. It defined the mbsg complex solutiopn-for 15 of the 18jdata sets.

- Assuming the 5 Percent range.is appropriate it msy be concluded that the

rthotran solution is the only blind transformation solutidn, of those ;tudied,

that is‘data generalizable. However until its publication both as a.manuscript

(Hofmann, 1975) and as a computgr program one should use a direct oblimin

(Jennrich and Sampson, 1966) solution with offe particular weight. The choice

for the direct oblimin weight should be either zero or negative oné-hajf.
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